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On Higher Order Mode Cutoff Frequencies
in Elliptical Step Index Fibers

SEMBIAM R. RENGARAJAN, SENIOR MEMBER, IEEE

Ab.wswcf — Cutoff frequencies of several higher order modes in two-layer

step index elliptical fiber are computed from a rigorous analysis of the

boundary value problem. Cutoff characteristics of modes in rectangular

and elliptical fibers in the literature are reviewed. Mode correspondence,

field symmetries, and physical considerations are invoked to establish

confidence in previously published results on the first higher order mode

cut off in elliptical fibers. Very large birefringence fibers are shown to

have lo-w values for the first higher order mode cut offi hence, their

usefulness in single-mode applications is limited.

I. INTRODUCTION

T HE POLARIZATION-preserving property of step in-

dex elliptical fibers was first demonstrated circa 1979

by Dyott et al. [1]. Since then the characteristics of optical

fibers with elliptical cross section have been investigated

by many researchers [2]-[9]. Rashleigh and Marrone [2]

have evaluated the polarization-holding abilities of several

fibers. In many applications, these fibers have been oper-

ated in the single-mode regime. The two dominant modes
in an elliptical fiber, ,HE1l and ~HE1l, have zero cutoff

frequency. In a fiber with large birefringence, the propaga-

tion characteristics of these two modes differ substantially

[1]; hence, the coupling between these two modes due to

minor manufacturing imperfections, bends, etc., is not

significant. The frequency of operation in a single-mode

fiber should be maintained below the cutoff frequency of

the first higher order mode. Thus, there is a need to

accurately determine the first higher order mode cut off.

Cozens and Dyott [3] obtained this result from an ap-

proximate characteristic equation based on the existence of

TM modes. Since elliptical fibers can support only hybrid

modes, the applicability of their results is limited to quasi-

circular fibers. Rengarajan and Lewis computed the first

higher order mode cut off in two-layer and three-layer step

index elliptical fibers [4], [5]. Their results were obtained

from the exact characteristic equation in terms of Mathieu

functions, modified Mathieu functions, and their deriva-
tives. Later, Shevchenko analyzed the higher order mode

cutoff frequencies of elliptical fibers using an approximate

technique called shift formulas [6]. His results for the

cutoff frequency of the first higher order mode, ~EH ~1,
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were in close agreement with those given in [4].

Shevchenko’s method is convenient for fibers of arbitrary

cross section, whereas for elliptical fibers the Mathieu

function method is numerically more efficient and accu-

rate. Matsuhara determined the cutoff frequency of the

first higher order mode in elliptical fibers by the boundary

element analysis [7]. Matsuhara’s results were in excellent

agreement with those in [4]. A mode-matching method was

employed by Miyamoto and Yasuura to investigate ellipti-

cally cored fibers [8]. Their results on the first higher order

mode also were in excellent agreement with those in [4]

and [7]. Recently Saad studied the elliptical fiber problem

by employing an approximate point matching approach

[9]. His results for the ~EHol mode cut off were in excel-

lent agreement with similar data presented in [4] for the

semiminor axis to semimajor axis ratio b/a >0.4. Saad’s

results for b/a <0.4 exhibit a substantial deviation from

those of [4]. In this region, signified by large eccentricity,

Saad’s computed values of cutoff frequency for the .EHO1

mode increase monotonically with decreasing b/a. Thus

Saad’s results indicate that it is possible to design a single-

mode elliptical fiber with extremely large birefringence

whereas physical considerations point otherwise. There

remains a need to investigate the cutoff characteristics of

higher order modes in elliptical fibers to study the single-

mode regime in large-ksirefringence applications and to

resolve the discrepancies between the results in [9] and

those in [4]-[8].

In this paper, cutoff values of several higher order

modes in the elliptical fiber are computed by solving the

exact characteristic equation. From an investigation of

mode correspondence and field symmetries in rectangular

and elliptical fibers, and from physical considerations.

confidence in previously published results on ~EH ~1 mode

cut off will be established. Results to be presented provide
a complete understanding of the higher order mode cut off
for very small values of b/a.

II. HIGHER ORDER MODE CUTOFF

Fig. 1 shows the cross-sectional geometry of two-layer

step index fibers investigated in this paper. The two-layer

elliptical fiber shown in Fig. l(a) consists of a core of

refractive index n ~ and a cladding of refractive index n ~.

The elliptical coordinate system used to solve this problem

is shown in Fig. 2. A rigorous analysis of modes in this
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Fig. 3. Normalized cutoff values of six higher order odd modes in an
elliptical fiber.

—m — 1 —m

(c)

Fig. 1. Cross sections of step-index fibers. (a) Two-layer elliptlcat fiber.
(b) Rectangular fiber. (c) Dielectric slab waveguide.
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Fig, 2. The elliptical coordinate system.

waveguide results in a characteristic equation involving an

infinite determinant in terms of Mathieu functions and

modified Mathieu functions [10], [11]. The characteristic

equation does not yield a simple closed-form expression

under cutoff condition; hence, the cutoff characteristics

are obtained numerically in this work. The cutoff fre-

quency of a given mode is obtained by solving the charac-

teristic equation /3 + n ~ko, where P is the propagation

constant of the mode under consideration and k. is the
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Fig, 4. Normahzed cutoff values of six higher order even modes in an
elhptical fiber.

free-space wavenumber. Computed values of the normal-

ized cutoff frequency,

are presented for 12 odd and even higher order modes as a

function of axis ratio, b/a, in Figs. 3 and 4. Here A is the

free-space wavelength. Numerical values of nl = 1.46 and
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n ~ = 1.34 have been assumed in these computations. The

designation of these modes has been arrived at from a

sequence of solutions for a quasi-circular fiber, b/a = 1

[11]. Since cutoff frequencies of many higher order modes

were studied in this work, a revised and improved version

of previously published algorithms [12] for computing the

Mathieu functions and modified Mathieu functions was

employed. In this new version, as many as 100 terms of

sine and cosine series for Mathieu functions and Bessel

function product series for modified Mathieu functions

were considered. The characteristic determinantal equation

has been previously shown to be rapidly convergent [4]. A

determinant of order 5 has been shown to be adequate to

compute the .EHOI cut off to three figures even at high

eccentricities. In this work determinants up to order 9 were

computed.

The cutoff values presented in Figs. 3 and 4 are for the

first 12 odd and even higher order modes at b/a= 1,

where they correspond to those of a circular fiber. As b/a

becomes smaller, the cutoff frequency of some other higher

order modes drops within the range of values occupied by

these 12 modes. For extremely small values of b/a, there

are numerous other higher order modes having cutoff

values between those of ~EHOl( ,HEOI) and ~HE21( ,HE21)

exhibited in Figs. 3 and 4. As b/a + O, there is an infinite

number of higher order modes exhibiting cutoff in the

finite range discussed above. For all b/a values ~EHOl

and ,HEOI are the first higher order odd and even modes

respectively. The cutoff frequencies of four higher order

modes given by Miyamoto and Yasuura [8] are in good

agreement with similar results reported in this paper.

III. MATHIEU FUNCTIONS AND POINT-MATCHING

METHODS

The Mathieu function method, a natural choice for

elliptical geometries, is an exact analytical approach in

which the field expressions in the core and cladding re-

gions are in terms of Mathieu and modified Mathieu

functions and their derivatives [4], [5], [10], [11]. In this

technique, field matching over the entire boundary be-

tween the core and the cladding is accomplished at a single

value of the radial coordinate $, which is the argument of

the modified Mathieu functions. The convergence behavior

of the Mathieu functions and the characteristic equation
have been previously discussed [12], [4]. The cutoff fre-

quency of the ~EHOl mode presently computed with an
improved version of Mathieu function programs (with a

greater number of terms in the series and with a larger

characteristic determinant) displayed in Fig. 3 is identical

to that in [4]. There was no numerical problem experienced

in computing VCof the ~EHOl mode for b/a down to 0.05.

It is believed that the results of the first higher order mode

presented in [4] and in Fig. 3 of this paper are accurate to

at least three figures.

The point-matching technique [9], [13] uses circular har-

monic functions and Bessel functions for field expressions.

In this method, field matching at the boundary between

core and cladding is performed at a number of discrete
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Fig. 5. Fn-st higher order mode cutoff parameter m elliptical and rect-
angular fibers.

points. Conceivably the point-matching approach requires

large matrices and a great many match points and has

convergence problems for small b/a values. Results of

this method are questionable in this range. The cutoff

values of the ~EHOl mode presented in [4] and [9] are in

excellent agreement with other theoretical and experimen-

tal results [2], [6]–[8], [14] for b/a >0.40. For b/a <0.40,

V, of ~EHOl in [4] and in [9] are in substantial disagree-

ment, as seen from Fig. 5. Unfortunately, there are no

experimental data available for b/a <0.40. The only other

theoretical data available in the literature for b/a <0.40

[6]-[8] are in close agreement with those in [4]. The cutoff

frequency results of the ~HE21 mode presented in Saad’s

paper [9] are in good agreement with those in Fig. 3,

whereas the results of &Hll in [9] show a substantial

deviation from similar results given in Fig. 3 for small b/a

values. It is interesting to note that the ~EHll data in Fig.

3 are in good agreement with similar results reported in [8].

IV. MODE CORRESPONDENCE AND LIMITING BEHAVIOR

In order to resolve the discrepancy in the cutoff results

of the ~EHol and ~EHll modes between this paper and

that of Saad, we consider mode correspondence in rectan-

gular and elliptical fibers. Eyges et al. have found that the

order in which the first dozen modes of an elliptical guide

(b/a = 0.5) reach cutoff is the same as the order of modes

in the rectangular guide ( b/a = 0.5) whose cross section is

shown in Fig. l(b) [14]. Moreover, the actual values of the

cutoff V have been found to be similar for the two shapes

for equal values of b/a, rzl, and n ~. They have also found

that the qualitative similarities between modes of the rect-

angular and elliptical guides approach numerical agree-

ment as the axis ratio, b/a, becomes small. For b/a = 0.1,

the first few modes have been found to be virtually indis-

tinguishable [14]. In Fig. 5, the cutoff V numbers for the

~EHOl mode of an elliptical fiber [4], [9] and similar results

for the first higher order mode in a rectangular fiber
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TABLE I
FIELD SYMMETRIES AND CUTOFF V VALUES FOR DIELECTRIC

SLAB WAVEGUIDES

J

Modes Symmetry with respect to x-axis Vc

odd even

edd TMn % Hx, Ey o, z, ...

cdd TEn Hz H,y, Ex o, n, ...

even TMn Hx, Ey % lri2, W2...

even TEn HY, EX Hz 7r12,3rd2...

.

[14] -[16] are plotted as a function of b/a. It is found that

the first higher order mode cut off in the rectangular fiber

is close to the .EHOI mode cut off in the elliptical fiber

shown in Fig. 3 and in [4]. Saad’s results for the .EHOI

mode cut off, however, exhibit a substantial deviation from

those of a rectangular fiber for small b/a values.

In a rectangular fiber, the first higher order mode, E; or

E~l has a cutoff frequency that decreases with decreasing

b/a [15]. As b/a -+ O, the cutoff frequencies of a doubly

x E~l, etc., approachinfirzi~e number of modes, E ~, E~l, E31,

zero. In the limiting case as b/a = O, the rectangular fiber

becomes a dielectric slab of infinite width and of thickness

2b, shown in Fig. l(c). From physical considerations, we

should expect a one-to-one correspondence between modes

in a dielectric slab guide and those in a rectangular fiber

for the limiting case of b/a = c. Here c is an infinitesi-

mally small but finite positive quantity. In the former,

modes have only one index, denoting the field variation in

TE~, ~TM~, ,TE~, ,TM~ [17]. The sub-the y direction, i.e., ~

scripts o and e denote odd and even symmetry respec-

tively and n is the mode index. In the rectangular fiber

(b/a = c) modes have two indices, denoting field variation

in x and y directions, i.e., E:,, E~m, where the index m

denotes variation along the x direction. For b/a = c, cor-

responding to each mode in the dielectric slab guide there

is an infinite number of modes in the rectangular fiber. As

c + O, we find an infinite mode degeneracy corresponding

to each mode in the dielectric slab guide. For example,

E;, E:, E;, etc., become E~.

Based on the study of Eyges et al. [14] and from physical

considerations, elliptical fibers are expected to have a

similar limiting behavior when b\a + O. Fig. 5 shows that

the first higher order mode cut off in a rectangular fiber

and that in an elliptical fiber [4] are very nearly equal and

both of them approach zero as b/a -+ O. The field symme-

tries for TE and TM modes in a dielectric slab waveguide

are shown in Table I. Odd and even symmetries (with

respect to the major axis) for hybrid modes in an elliptical

fiber are given in Table II, where field components in

TABLE II
FIELD SYhfMETRIES IN ELLIPTICAL FIBER WAVEGUIDES

.

Modes $Ymmetw wth respect to major axfs

I

odd even odd even

)dd

lYbrld Hz, ~, H< I=z, Hq, E{ Hz, Hx, Ey Ez, Ex, Hy

nodes

wen

)ybrid E=, Hn, Et H,, En, Hk Ez, Ex, Hy Hz, Hx, Ey

nodes

Vc

for the hmltmg

case b/a+O.

.

0,7C.

(Ex, Hy dominating

or

nJ2, 3m/2,

(Hx, Ey dommating

o,n

(Hx, Ey dommatlng

or

7d2, 3n/2,

(Ex, Hy domlna!ing

elliptical coordinates and those in Cartesian coordinates

near the center of the guide are shown. From considera-

tions of mode correspondence and field symmetries, an

infinite number of modes having zero cutoff are expected

in the elliptical fiber for the limiting value of b/a ==O.

Also, an infinite mode degeneracy is expected correspond-

ing to each mode in the dielectric slab waveguide with a

cutoff value of n/2, r, 3r/2, etc, From Figs. 3 and 4 we

find that six modes have ~,= O, four modes have ~,= 7r/2,

and two have V, = m. This behavior is due to the fact that

these are the first 12 higher order modes at b/a ==1.

Obviously the first 12 higher order modes near b/a = O

would all have a V,= O.

Clearly Saad’s results do not show any higher order

mode exhibiting Vc = O at b/a = O. His results on cutoff

values of ~EHOl and ~EHll modes for small b/a do not

show the correct physical behavior and hence have serious

limitations. These results might have been the cutoff values

of some other higher order modes. Results presented in

Figs. 3, 4, and 5 provide a complete physical understand-

ing of the behavior of higher order modes cut off in

elliptical fibers for small b/a values including the limiting

case of b/a = O. Also, it has been reaffirmed that fibers

with very large birefringence have limited usefulness in

single-mode applications, since they have a very small

value for the first higher order mode cut off.

V. CONCLUSIONS

This paper has presented computed values of the cutoff

frequencies of the first 12 odd and even higher order

modes in a two-layer elliptical fiber. From an investigation
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of mode correspondence in rectangular and elliptical fibers,

field symmetries, and physical considerations in the limit-

ing case of b/a = O, confidence in previously published

results [4]–[8] is established. Cutoff values presented in a

recent paper [9] are applicable for b/a >0.40 whereas for

smaller values of b/a those results are shown to have

discrepancies. A very large birefringence elliptical fiber has

a low value of the first higher order mode cut off and

hence its utility in single mode application is limited.

ACKNOWLEDGMENT

Thanks are due to Prof. C. Yeh of UCLA for many

helpful discussions. One of the reviewers is thanked for

bringing reference [8] to the author’s attention.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

R. B. Dyott, J. R. Cozens, and D. CT. Morris, “Preservation of
polarization in optical-fiber waveguides with elliptical cross-
section,” Electron Lett., vol. 15, pp. 298-299, 1979.

S. C. Rashleigh and M. J. Marrone, “Polarization holding in
elliptical-core birefringent fibers,” IEEE Trans. Microwaue Theory
Tech., vol. MTT-30, pp. 1503-1511, Oct. 1982.

J. R. Cozens and R. B. Dyott, “Higher-mode cutoff in elliptical
dielectric waveguides~’ Electron. Left., vol. 15, pp. 558-559, 1979.

S. R. Rengarajan and J. E. Lewis, “First higher-mode cutoff in
two-layer elliptical fiber waveguides,” Electron Lett., vol. 16, no. 7,
pp. 263–264, Mar. 1980.
S. R. Rengarajan and J. E. Lewis, “Single mode propagation in
multi-layer elliptical fiber waveguides,” Radio ,Sci., vol. 16, no. 4,

PP. 541-54’7, July-Aug. 1981,
V. V. Shevchenko, ‘<Shift formulas in the theory of dielectric
waveguides,” Izu. Vuz. Radioelektron., vol. 26, no. 5, pp. 9-18,

1983.

M. Matsuhara, “Boundary element analysis of polarization holding
fibers,” Denshi Tsushin Gakkui Ronbunshi, vol. 67-B, no. 9, pp.
968–973, Sept. 1984 (In Japanese). English translation in Electron.
and Commun. Japan, part 1, vol. 68, no. 5, pp. 114–120, May 1985.

T. Miyamoto and K. Yasuura, “Accurate numerical analysis of an
elliptically cored optical fiber for polarization preservation, using
mode-matching method,” Denshl Tsushin Gakkal Ronbunshi, vol.
68-B, no. 9, pp. 1003-1010, Sept. 1985 (In Japanese). English
translation in Electron. and Commun. Japan, part 1, vol. 69, no. 9,
pp. 111-120, Sept. 1986.

S. M. Saad, “On the higher order modes of elliptical optical fibers,”
IEEE Trans. Microwave Theoy Tech., vol. MT’T-33, pp. 1110-1112,
NOV. 1985.

C. Yeh, “Elliptical dielectric waveguides,” J. Appl. Phys., vol. 33,

pp. 3235–3243, NOV. 1962.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. R. Rengarajan, “A study of multi-media elliptical waveguides,”
Ph,D, dissertation, University of New Brunswick, Fredericton, NE,
Canada, Aug. 1980.
S. R. Rengarajan and J. E. Lewis, “ Mathieu functions of integral
order and real arguments,” IEEE Trans. Microwaue Theory Tech.,

VO1, MTT-28, pp. 276–277, Mar. 1980.
J. E. Goell, “A circular-harmonic computer analysis of rectangular
dielectric waveguides,” Bell Syst. Tech. J., vol. 48, no. 9, pp.
2133-2161, Sept. 1969.
L. Eyges, P. Gianino, and P. Wintersteiner, “Modes of Dielectric
Waveguides of Arbitrary Cross Sectional Shape,” J. Opt. Sot.

Amer., vol. 69, no. 9, pp. 1226-1235, Sept. 1979.
E. A. J. Marcatili, “Dielectric rectangular waveguide and direc-
tional coupler for integrated optics,” Bell Syst, Tech. J., vol. 48, no.
9, pp. 2071-2102, Sept. 1969.
C. C. Su, “A surface integral equation method for homogeneous
optical fibers and coupled image lines of arbitrary cross section,”
IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 1114-1119,
Nov. 1985.

R, F, Barrington, Time Harmonic Electromagnetic Fields. New
York: McGraw-Hill, 1961.

Semblam R. Rengarajan (S’77-M80-SM85) re-
ceived the Ph.D. degree in electrical engineering
from the University of New Brunswick, Frederic-
ton, NE, Canada, in 1980.

He was an antenna development engineer at
Bharat Electronics Ltd., Ghaziabad, U. P., India,
during the years 1971-1976. Since 1980, he has
been with the California State University,
Northridge, presently sewing as Professor in the
Department of Electrical and Computer Engi-
neering. From June 1983 to August 1984, he was

with the Spacecraft Antenna Research Group of the Jet Propulsion
Laboratory; California Institute of Technolog~, Pasadena, CA. “During
1987–1988, he was a visiting Professor at the University of California,
Los Angeles, on sabbatical leave. He has been a consultant to Hughes
Aircraft Company and NASA/Jet Propulsion Laboratory, and a visiting
researcher at UCLA. He is listed in the 21st edition of Marquis Who’s

Who in the West. His research interests include applied electromagnetic
and numerical techniques.

Dr. Rengarajan has served the Los Angeles chapter of the IEEE
Antennas and Propagation Society as Chairman (1983–1984), Vice Chair-
man (1982–1983), and Secretary/Treasurer (1981–1982). His profes-
sional memberships include URSI Commission B, the American Society
of Engineering Education, and Sigma Xi.


