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On Higher Order Mode Cutoff Frequencies
in Elliptical Step Index Fibers

SEMBIAM R. RENGARAJAN, SENIOR MEMBER, IEEE

Abstract — Cutoff frequencies of several higher order modes in two-layer
step index elliptical fiber are computed from a rigorous analysis of the
boundary value problem. Cutoff characteristics of modes in rectangular
and elliptical fibers in the literature are reviewed. Mode correspondence,
field symmetries, and physical considerations are invoked to establish
confidence in previously published results on the first higher order mode
cut off in elliptical fibers. Very large birefringence fibers are shown to
have low values for the first higher order mode cut off; hence, their
usefulness in single-mode applications is limited.

I. INTRODUCTION

HE POLARIZATION-preserving property of step in-
dex elliptical fibers was first demonstrated circa 1979
by Dyott et al. [1]. Since then the characteristics of optical
fibers with elliptical cross section have been investigated
by many researchers [2]-[9]. Rashleigh and Marrone [2]
have evaluated the polarization-holding abilities of several
fibers. In many applications, these fibers have been oper-
ated in the single-mode regime. The two dominant modes
in an elliptical fiber, .HE;; and SHE,;, have zero cutoff
frequency. In a fiber with large birefringence, the propaga-
tion characteristics of these two modes differ substantially
[1]; hence, the coupling between these two modes due to
minor manufacturing imperfections, bends, etc., is not
significant. The frequency of operation in a single-mode
fiber should be maintained below the cutoff frequency of
the first higher order mode. Thus, there is a need to
accurately determine the first higher order mode cut off.
Cozens and Dyott [3] obtained this result from an ap-
proximate characteristic equation based on the existence of
TM modes. Since elliptical fibers can support only hybrid
modes, the applicability of their results is limited to quasi-
circular fibers. Rengarajan and Lewis computed the first
higher order mode cut off in two-layer and three-layer step
index elliptical fibers [4], [5]. Their results were obtained
from the exact characteristic equation in terms of Mathieu
functions, modified Mathieu functions, and their deriva-
tives. Latef, Shevchenko analyzed the higher order mode
cutoff frequencies of elliptical fibers using an approximate
technique called shift formulas [6]. His results for the
cutoff frequency of the first higher order mode, ;EH,,,
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were in close agreement with those given in [4].
Shevchenko’s method is convenient for fibers of arbitrary
cross section, whereas for elliptical fibers the Mathieu
function method is numerically more efficient and accu-
rate. Matsuhara determined the cutoff frequency of the
first higher order mode in elliptical fibers by the boundary
element analysis [7]. Matsuhara’s results were in excellent
agreement with those in [4]. A mode-matching method was
employed by Miyamoto and Yasuura to investigate ellipti-
cally cored fibers [8). Their results on the first higher order
mode also were in excellent agreement with those in [4]
and [7]. Recently Saad studied the elliptical fiber problem
by employing an approximate point matching approach
[9]. His results for the ,EH;; mode cut off were in excel-
lent agreement with similar data presented in [4] for the
semiminor axis to semimajor axis ratio b/a > 0.4. Saad’s
results for b/a < 0.4 exhibit a substantial deviation from
those of [4]. In this region, signified by large eccentricity,
Saad’s computed values of cutoff frequency for the JEH,
mode increase monotonically with decreasing b/a. Thus
Saad’s results indicate that 1t is possible to design a single-
mode elliptical fiber with extremely large birefringence
whereas physical considerations point otherwise. There
remains a need to investigate the cutoff characteristics of
higher order modes in elliptical fibers to study the single-
mode regime in large-birefringence applications and to
resolve the discrepancies between the results in [9] and
those in [4]-[8]. ,

In this paper, cutoff values of several higher order
modes in the elliptical fiber are computed by solving the
exact characteristic equation. From an investigation of
mode correspondence and field symmetries in rectangular
and elliptical fibers, and from physical considerations.
confidence in previously published results on ;EH;; mode
cut off will be established. Results to be presented provide
a complete understanding of the higher order mode cut off
for very small values of b/a.

II. HiGHEER ORDER MoODE CUTOFF

Fig. 1 shows the cross-sectional geometry of two-layer
step index fibers investigated in this paper. The two-layer
elliptical fiber shown in Fig. 1(a) consists of a core of
refractive index n; and a cladding of refractive index n,.
The elliptical coordinate system used to solve this problem
is shown in Fig. 2. A rigorous analysis of modes in this
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Cross sections of step-index fibers. (a) Two-layer elliptical fiber.
(b) Rectangular fiber. (¢) Dielectric slab waveguide.
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Fig. 2. The elliptical coordinate system.

waveguide results in a characteristic equation involving an
infinite determinant in terms of Mathieu functions and
modified Mathieu functions [10], [11]. The characteristic
equation does not yield a simple closed-form expression
under cutoff condition; hence, the cutoff characteristics
are obtained numerically in this work. The cutoff fre-
quency of a given mode is obtained by solving the charac-
teristic equation B — n,k, where 8 is the propagation
constant of the mode under consideration and k; is the
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Fig. 3. Normalized cutoff values of six higher order odd modes in an
elliptical fiber.
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Fig. 4. Normalized cutoff values of six higher order even modes in an

elhptical fiber.

free-space wavenumber. Computed values of the normal-
ized cutoff frequency,

V,=2ab[n2—n2]" /A

are presented for 12 odd and even higher order modes as a
function of axis ratio, b/a, in Figs. 3 and 4. Here A is the
free-space wavelength. Numerical values of n;=1.46 and
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n,=1.34 have been assumed in these computations. The
designation of these modes has been arrived at from a
sequence of solutions for a quasi-circular fiber, b/a =1
[11]. Since cutoff frequencies of many higher order modes
were studied in this work, a revised and improved version
of previously published algorithms [12] for computing the
Mathieu functions and modified Mathieu functions was
employed. In this new version, as many as 100 terms of
sine and cosine series for Mathieu functions and Bessel
function product series for modified Mathieu functions
were considered. The characteristic determinantal equation
has been previously shown to be rapidly convergent [4]. A
determinant of order 5 has been shown to be adequate to
compute the EH, cut off to three figures even at high
eccentricities. In this work determinants up to order 9 were
computed.

The cutoff values presented in Figs. 3 and 4 are for the
first 12 odd and even higher order modes at b/a =1,
where they correspond to those of a circular fiber. As b/a
becomes smaller, the cutoff frequency of some other higher
order modes drops within the range of values occupied by
these 12 modes. For extremely small values of b/a, there
are numerous other higher order modes having cutoff
values between those of EH,(,HE;) and HE,,(_,HE,;)
exhibited in Figs. 3 and 4. As b/a — 0, there is an infinite
number of higher order modes exhibiting cutoff in the
finite range discussed above. For all b/a values ,EH,
and ,HE,, are the first higher order odd and even modes
respectively. The cutoff frequencies of four higher order
modes given by Miyamoto and Yasuura [8] are in good
agreement with similar results reported in this paper.

III. MATHIEU FUNCTIONS AND POINT-MATCHING
METHODS

The Mathieu function method, a natural choice for
elliptical geometries, is an exact analytical approach in
which the field expressions in the core and cladding re-
gions are in terms of Mathieu and modified Mathieu
functions and their derivatives {4], [5], [10], [11]. In this
technique, field matching over the entire boundary be-
tween the core and the cladding is accomplished at a single
value of the radial coordinate ¢, which is the argument of
the modified Mathieu functions. The convergence behavior
of the Mathieu functions and the characteristic equation
have been previously discussed [12], [4]. The cutoff fre-
quency of the \EH, mode presently computed with an
improved version of Mathieu function programs (with a
greater number of terms in the series and with a larger
characteristic determinant) displayed in Fig. 3 is identical
to that in [4]. There was no numerical problem experienced
in computing ¥, of the ,EH; mode for b/a down to 0.05.
It is believed that the results of the first higher order mode
presented in [4] and in Fig. 3 of this paper are accurate to
at least three figures. ‘

The point-matching technique [9], [13] uses circular har-
monic functions and Bessel functions for field expressions.
In this method, field matching at the boundary between
core and cladding is performed at a number of discrete
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Fig. 5. First higher order mode cutoff parameter 1n elliptical and rect-

angular fibers.

points. Conceivably the point-matching approach requires
large matrices and a great many match points and has
convergence problems for small b/a values. Results of
this method are questionable in this range. The cutoff
values of the JEH,, mode presented in [4] and [9] are in
excellent agreement with other theoretical and experimen-
tal results [2], [6]-[8], [14] for b/a > 0.40. For b/a < 0.40,
V, of LEH; in [4] and in [9] are in substantial disagree-
ment, as seen from Fig. 5. Unfortunately, there are no
experimental data available for b/a < 0.40. The only other
theoretical data available in the literature for b/a < 0.40
[6]-[8] are in close agreement with those in [4]. The cutoff
frequency results of the HE, mode presented in Saad’s
paper [9] are in good agreement with those in Fig. 3,
whereas the results of ,EH,;; in [9] show a substantial
deviation from similar results given in Fig. 3 for small b /4
values. It is interesting to note that the JEH,; data in Fig.
3 are in good agreement with similar results reported in [8].

IV. MobDE CORRESPONDENCE AND LIMITING BEHAVIOR

In order to resolve the discrepancy in the cutoff results
of the .EH, and ,EH,; modes between this paper and
that of Saad, we consider mode correspondence in rectan-
gular and elliptical fibers. Eyges ef al. have found that the
order in which the first dozen modes of an elliptical guide
(b/a = 0.5) reach cutoff is the same as the order of modes
in the rectangular guide (b/a = 0.5) whose cross section is
shown in Fig. 1(b) [14]. Moreover, the actual values of the
cutoff ¥ have been found to be similar for the two shapes
for equal values of b/a, ny, and n,. They have also found
that the qualitative similarities between modes of-the rect-
angular and elliptical guides approach numerical agree-
ment as the axis ratio, b/a, becomes small. For b/a = 0.1,
the first few modes have been found to be virtually indis-
tinguishable [14]. In Fig. 5, the cutoff ¥ numbers for the
+EH; mode of an elliptical fiber [4], [9] and similar results
for the first higher order mode in a rectangular fiber
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TABLE 1 TABLE 11
FIELD SYMMETRIES AND CUTOFF V VALUES FOR DIELECTRIC FieLp SYMMETRIES IN ELLIiPTICAL FIBER WAVEGUIDES
SLAB WAVEGUIDES
Modes Symmetry with respect lo x-axis Ve Modes symmetry with respect to major axis Vg
odd even
odd TM Ho E 0 odd even odd even for the Iimiting
n & Xy 1T case b/a-»0.
odd TE,, H, Hy, Ex 0,
0,m.
odd (Ey Hy dominating)
even TM, Hy Ey E, /2, 3n/2...
hybrid | Hy, Eq, He | Ep g Ee | HuHgoBy | EnBxHy for
modes /2, 3ni2, .
evenTE, H. By H 2, 3n/2... (Hy, E, dominating)
O,n
[14]-[16] are plotted as a function of b/a. It is found that |gen (H,, E, dominating)
the first higher order mode cut off in the rectangular fiber
. . e . hybrid | B, Hy Ep| HuEp M| E, By H H,. Hy, E or
is close to the ,EH, mode cut off in the elliptical fiber n n y y
shown in Fig. 3 and in [4]. Saad’s results for the NEH,  |modes w2, 3ni2,.
mode cut off, however, exhibit a substantial deviation from (Ex. Hy dominating)
those of a rectangular fiber for small b/a values.

In a rectangular fiber, the first higher order mode, E5 or
EJ, has a cutoff frequency that decreases with decreasing
b/a [15]. As b/a — 0, the cutoff frequencies of a doubly
infinite number of modes, EX, EY, E¥, EY,, etc., approach
zero. In the limiting case as b/a = 0, the rectangular fiber
becomes a dielectric slab of infinite width and of thickness
2b, shown in Fig. 1(c). From physical considerations, we
should expect a one-to-one correspondence between modes
in a dielectric slab guide and those in a rectangular fiber
for the limiting case of b/a=e. Here € is an infinitesi-
mally small but finite positive quantity. In the former,
modes have only one index, denoting the field variation in
the y direction, ie., IE,, ITM,, TE  TM, [17]. The sub-
scripts o and e denote odd and even symmetry respec-
tively and n is the mode index. In the rectangular fiber
(b/a =€) modes have two indices, denoting field variation
in x and y directions, ie, EX E! = where the index m
denotes variation along the x direction. For b/a = ¢, cor-
responding to each mode in the dielectric slab guide there
is an infinite number of modes in the rectangular fiber. As
e — 0, we find an infinite mode degeneracy corresponding
to each mode in the dielectric slab guide. For example,
EX, Ef, EX, etc., become E.

Based on the study of Eyges et al. [14] and from physical
considerations, elliptical fibers are expected to have a
similar limiting behavior when b/a — 0. Fig. 5 shows that
the first higher order mode cut off in a rectangular fiber
and that in an elliptical fiber [4] are very nearly equal and
both of them approach zero as b/a — 0. The field symme-
tries for TE and TM modes in a dielectric slab waveguide
are shown in Table I. Odd and even symmetries (with
respect to the major axis) for hybrid modes in an elliptical
fiber are given in Table II, where field components in

elliptical coordinates and those in Cartesian coordinates
near the center of the guide are shown. From considera-
tions of mode correspondence and field symmetries, an
infinite number of modes having zero cutoff are expected
in the elliptical fiber for the limiting value of b/a=0.
Also, an infinite mode degeneracy is expected correspond-
ing to each mode in the dielectric slab waveguide with a
cutoff value of #/2, 7, 37/2, etc. From Figs. 3 and 4 we
find that six modes have I, = 0, four modes have V, = 7/2,
and two have V, = 7. This behavior is due to the fact that
these are the first 12 higher order modes at b/a=1.
Obviously the first 12 higher order modes near b/a =0
would all have a V= 0.

Clearly Saad’s results do not show any higher order
mode exhibiting V. =0 at b/a=0. His results on cutoff
values of _EH,, and ,EH;; modes for small b/a do not
show the correct physical behavior and hence have serious
limitations. These results might have been the cutoff values
of some other higher order modes. Results presented in
Figs. 3, 4, and 5 provide a complete physical understand-
ing of the behavior of higher order modes cut off in
elliptical fibers for small »/a values including the limiting
case of b/a=0. Also, it has been reaffirmed that fibers
with very large birefringence have limited usefulness in
single-mode applications, since they have a very small
value for the first higher order mode cut off.

V. CONCLUSIONS

This paper has presented computed values of the cutoff
frequencies of the first 12 odd and even higher order
modes in a two-layer elliptical fiber. From an investigation
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of mode correspondence in rectangular and elliptical fibers,
field symmetries, and physical considerations in the limit-
ing case of b/a =0, confidence in previously published
results [4]-[8] is established. Cutoff values presented in a
recent paper [9] are applicable for b/a > 0.40 whereas for
smaller values of b/a those results are shown to have
discrepancies. A very large birefringence elliptical fiber has
a low value of the first higher order mode cut off and
hence its utility in single mode application is limited.
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